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ABSTRACT 

The World is suffering from the global pandemic Coronavirus. The infection is 

spreading quickly. One way to stop the spread by wearing a mask. Face Mask Detector 

detects whether a person is wearing a mask properly or not by image analysis. In this 

paper, we adopt a high efficient and accurate facemask detector, which is Retina Face 

Mask. To fuse high-level semantic information, we adopt a one-stage detector consisting 

of a feature pyramid network with many feature maps and we adopted a novel context 

attention module to detect facemasks. To reject the predictions with low confidence, we 

adopt a novel cross-class object removal algorithm. . To reject the predictions with low 

confidence, we adopt a novel cross-class object removal algorithm. We propose NVIDIA 

Processor, i.e NVIDIA Jetson Nano implementation to carry out the work. We can use 

this Face Mask detector at the entrances to alert people about the face mask. 



i  

LIST OF FIGURES: 

Figure 1.1 Types of Haar features 

Figure 1.2 Converting Original Image into Integral Image 

Figure 1.3 Cascade Amplifier 

Figure 1.4 Single Shot Detector 

Figure 1.5 Image Recognition V/S Object Detection 

Figure 1.6 Skip Connections 

Figure 1.7 ResNet 

Figure 1.8 Feature Pyramid Network 

Figure 1.9 Feature Extraction in FPN 

Figure 1.10 Convolutional Neural Network 

Figure 1.11 Max Pooling 

Figure 1.12 Fully Connected Layers 

Figure 2.1 Front View of Jetson Nano 

Figure 2.2 Rear View of Jetson Nano 

Figure 2.3 Layout of Jetson Nano 

Figure 2.4 40 Pin Header 

Figure 2.5 8 Pin Button Header 

Figure 2.6 4 Pin Header 

Figure 2.7 Camera Lanes 

Figure 2.8 Logitech Camera 

Figure 2.9 USB Cable 

Figure 2.10 Memory Card 

Figure 3.1 Context Detection Head 

Figure 3.2 Workflow of Facemask Detection 



1 
 

 

 

 

 

 

 

 
 

CHAPTER 1 

INTRODUCTION 



2 
 

 

INTRODUCTION 

 

1.1 Project Objective: 

The spread of COVID-19 is increasing in the world. This virus can be 

affected from one human to another through the droplets and airborne. 

According to the instructions from WHO, to reduce the spread of COVID-19, 

every person needs to wear a facemask, do social distancing, evade the crowd 

area and, also always maintain the immune system. So everyone should wear 

the mask properly. To overcome this situation, robust facemask detection needs 

to be developed. 

 

1.2 Project Outline: 

The main goal of the project is to implement this system at colleges, airports, 

hospitals, and offices where chances of spread of COVID-19 through contagion 

are relatively higher. For efficient network for Face Mask Detection. We adopt 

an Object detection framework, which suggests a detection network with a 

backbone, neck, head. The novel Attention Model is to detect the facemask. To 

improve the detection by the rejection of low confidence prediction we use the 

concept of a Novel cross-class object removal algorithm. This algorithm has 

been carried out by using the NVIDIA Jetson Nano board. 
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As people across the globe are combating the widespread COVID-19 
pandemic, it becomes very essential to develop new technologies to analyze 
and fight against the disease spread. The most essential protection against 
coronavirus is Face Mask and as the day surpasses scientists and Doctors 
have recommended everyone wear the mask. At that moment World health 
organization (WHO) have recommended that people should have 
respiratory symptoms or people who are taking care of people who have 
symptoms. Furthermore, many public service providers require customers 
to use the service only if they wear masks correctly. As per our knowledge, 
there are only a few research studies about facemask detection based on 
image analysis. In 2019, Implementation on the Principal Component 
Analysis on Masked and Unmasked Face Recognition proposed by Md. 
Sabbir Ejaz and Rabiul Islam, here they broke down a concealed and non-
covered face acknowledgment precision by utilizing a standard segment 
investigation. The dataset utilized is Olivetti and Oracle research lab (ORL) 
face information base. Here PCA is utilized for highlight extraction. The 
means used in this work incorporate Facial Element Extraction and Facial 
Picture Procurement utilizing PCA and EigenVector Estimation. 
Subsequently, it gives a high acknowledgment pace of the face without 
masks. In 2019, Facial Mask Detection using semantic segmentation, which 
was determined by Roshan Lal Meena Pal, Ashutosh Balakrishnan, and 
Amit Verma utilized a facemask detection using semantic division. Here the 
class names are referred to as face or non-face. The convolutional neural 
organization VGG-16 engineering followed by a completely convolutional 
network is utilized for division. Accordingly, it perceives numerous faces. 
This strategy is helpful for frontal appearances moreover as non-frontal 
countenances. Thus, it focuses on error predictions. In 2020, performance 
evaluation of intelligent mask detection systems with various deep learning 
classifiers proposed by C. Jagadeeswari, M.Uday Theja. Here the 
presentation of facemasks identification utilizing profound learning 
calculations like distinctive profound learning classifiers could likewise be 
investigated mobileNet V2, ResNet 50, VGG 16, ADAM, SGD. These are 
the classifiers utilized for it. For every classifier followed by[ 3]. 
Streamlining agents and assess the presentation. The enhancers are utilized 
here like ADAM, ADAGRAD, SGD (Stochastic Slope Plummet). Thus, 
ADAM analyzer execution is staggeringly acceptable and says that the 
MobileNet V2 classifier has the best outcomes with high exactness. In 
2020, Retinal mask Detector [4] proposed by Mingjie Jiang, Xinqi fan, and 
Hong, presents a Retinal Mask Finder. It is a One-stage object identifier. 
The dataset contained 7959 pictures. The ResNet and versatile 
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Net are utilized as Spine. However, ResNet is contemplated as a standard 
spine. The location network comprises a spine, a neck, and head modules. 
Our idea RETINA FACE MASK DETECTION was implemented on a 
Jetson Nano board. The proposed system develops classification and 
predictive models that can account for accurate classification, grouping, and 
prediction of Facemasks on the face of a person. The proposed system will 
focus on enhancing the prediction by increasing its accuracy and detection 
probability. 
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DEEP LEARNING-BASED DETECTORS 

3.1 Introduction: 

 
Deep learning: Deep learning is an artificial intelligence function that imitates 

the workings of the human brain in processing data and creating patterns for 

use in decision-making. Deep learning is a subset of machine learning in 

artificial intelligence that has networks capable of learning unsupervised from 

data that is unstructured or unlabeled. Also known as deep neural learning or 

deep neural network. 

● Deep learning is an AI function that mimics the workings of the human 

brain in processing data for use in detecting objects, recognizing speech, 

translating languages, and making decisions. 

● Deep learning AI can learn without human supervision, drawing from 

data that is both unstructured and unlabeled. 

● Deep learning, a form of machine learning used to help detect fraud or 

money laundering, among other functions. 

 
How Deep Learning Works: 

Deep learning has evolved hand-in-hand with the digital era, which has brought 

about an explosion of data in all forms and from every region of the world. This 

data, known simply as big data, is drawn from sources like social media, 

internet search engines, e-commerce platforms, and online cinemas, among 

others. This enormous amount of data is readily accessible and can be shared 

through Fintech applications like cloud computing. 

 
However, the data, which normally is unstructured, is so vast that it could take 

decades for humans to comprehend it and extract relevant information. 

Companies realize the incredible potential that can result from unraveling this 

wealth of information and are increasingly adapting to AI systems for 

automated support. 

 
Deep Learning vs Machine Learning 

One of the most common AI techniques used for processing big data is machine 

learning, a self-adaptive algorithm that gets increasingly better analysis and 

patterns with experience or with newly added data. If digital payments 
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The company wanted to detect the occurrence or potential for fraud in its 

system, so it could employ Machine Learning tools for this purpose. The 

computational algorithm built into a computer model will process all 

transactions happening on the digital platform, find patterns in the data set, and 

point out any detected by the pattern. 

 
Deep learning, a subset of machine learning, utilizes a hierarchical level of 

artificial neural networks to carry out the process of machine learning. The 

artificial neural networks are built like the human brain, with neuron nodes 

connected like a web. While traditional programs build analysis with data in a 

linear way, the hierarchical function of deep learning systems enables machines 

to process data with a nonlinear approach. 

 
3.2 Types of Detectors: 

 
Different Object Detection Methods: Methods for object detection generally 

fall into neural network-based or non-neural approaches. For non-neural 

approaches, it becomes necessary to first define features using one of the 

methods below, then using a technique such as a Support vector machine 

(SVM) to do the classification. On the other hand, neural techniques can do 

end-to-end object detection without specifically defining features and are 

typically based on convolutional neural networks (CNN). 

 
● Non-neural approaches: 

○ Viola-jones object detection framework based on Haar features 

○ Histogram of gradients 

● Neural network approaches: 

○ Region Proposals (R-CNN, Fast R-CNN, Faster R-CNN, 

cascade R-CNN.) 

○ Single Shot Detector (SSD) 

○ You Only Look Once (YOLO) 

○ Single-Shot Refinement Neural Network for 

Object Detection (Refine Det) 

○ Retina-Net 

○ Deformable convolutional networks 
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3.2.1 Viola-jones Detection Framework Based on Haar Features: 

 

Viola-Jones Algorithm: Viola-Jones algorithm is named after two computer 

vision researchers who proposed the method in 2001, Paul Viola and Michael 

Jones in their paper, “Rapid Object Detection using a Boosted Cascade of 

Simple Features”. Despite being an outdated framework, Viola-Jones is quite 

powerful, and its application has proven to be exceptionally notable in real-time 

face detection. This algorithm is painfully slow to train but can detect faces in 

real-time with impressive speed. 

Given an image(this algorithm works on grayscale images), the algorithm looks 

at many smaller subregions and tries to find a face by looking for specific 

features in each subregion. It needs to check many different positions and scales 

because an image can contain many faces of various sizes. Viola and Jones used 

Haar-like features to detect faces in this algorithm. 

 
The Viola-Jones algorithm has four main steps, which we shall discuss in the 
sections to follow 

1. Haar Like Features 

2. Integral image 

3. AdaBoost Training 

4. Cascade Classifier 

 

1. Haar Like Features: In the 19th century a Hungarian mathematician, 
Alfred Haar gave the concepts of Haar wavelets, which are a sequence of 
rescaled “square-shaped” functions, which together form a wavelet family or 
basis. Voila and Jones adapted the idea of using Haar wavelets and developed 
the so-called Haar-like features. Haar-like features are digital image features 
used in object recognition. All human faces share some universal properties of 
the human face like the eyes region is darker than its neighbor pixels, and the 
nose region is brighter than the eye region. A simple way to find out which 
region is lighter or darker is, to sum up, the pixel values of both regions and 
compare them. The sum of pixel values in the darker region will be smaller than 
the sum of pixels in the lighter region. If one side is lighter than the other, it 
may be an edge of an eyebrow or sometimes the middle portion may be shinier 
than the surrounding boxes, which can be interpreted as a nose This can be 
accomplished using Haar-like features and with the help of them, we can 
interpret the different parts of a face. 



10 
 

There are 3 types of Haar-like features that Viola and Jones identified in their 

research: 
 

1. Edge features 

2. Line-features 

3. Four-sided features 
 
 

 
Fig 1.1 Types of Haar Features 

 
Edge features and Line features are useful for detecting edges and lines 

respectively. The four-sided features are used for finding diagonal features. 
 

The value of the feature is calculated as a single number: the sum of pixel 

values in the black area minus the sum of pixel values in the white area. The 

value is zero for a plain surface in which all the pixels have the same value, and 

thus, provide no useful information. Since our faces are of complex shapes with 

darker and brighter spots, a Haar-like feature gives you a large number when 

the areas in the black and white rectangles are very different. Using this value, 

we get a piece of valid information out of the image. To be useful, a Haar-like 

feature needs to give you a large number, meaning that the areas in the black 

and white rectangles are very different. 

 

 

2. Integral Image: The integral image plays its part in allowing us to 

perform these intensive calculations quickly so we can understand whether a 

feature of several features fits the criteria. 

 
An integral image (also known as a summed-area table) is the name of both a 

data structure and an algorithm used to obtain this data structure. It is used as a 

quick and efficient way to calculate the sum of pixel values in an image or 
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the rectangular part of an image. In an integral image, the value of each point is 

the sum of all pixels above and to the left, including the target pixel: 

 
Fig 1.2 Converting Original image to Integral image 

 
 

 

Using these integral images, we save a lot of time calculating the summation of 

all the pixels in a rectangle, as we only have to perform calculations on four 

edges of the rectangle. See the example below to understand. When we add the 

pixels in the blue box, we get eight as the sum of all pixels, and here we had six 

elements involved in your calculation. Now to calculate the sum of these same 

pixels using the integral image, you just need to find the corners of the 

rectangle and then add the green vertices and subtract the vertices in the red 

boxes. Now doing that here 

 
21 +1 - 11 -3 =8 
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We get the same answer and only four numbers are involved in calculations. No 

matter how many pixels are in the rectangle box, we will just need to compute 

on these 4 vertices. Now to calculate the value of any haar-like feature, you 

have a simple way to calculate the difference between the sums of pixel values 

of two rectangles. 
 

3. AdaBoost Algorithm: The AdaBoost (Adaptive Boosting) Algorithm is 
a machine learning algorithm for selecting the best subset of features among all 
available features. The output of the algorithm is a classifier (a.k.a Prediction 

Function, Hypothesis Function) called a “Strong Classifier”. A Strong 
Classifier is made up of linear combinations of “Weak Classifiers” (best 

features). From a high level, to find these weak classifiers the algorithm runs 
for T iterations where T is the number of weak classifiers to find and it is set by 

you. In each iteration, the algorithm finds the error rate for all features and then 
chooses the feature with the lowest error rate for that iteration. 

 
4. Cascade Classifier: A Cascade Classifier is a multi-stage classifier that 

can perform detection quickly and accurately. Each stage consists of a strong 

classifier produced by the AdaBoost Algorithm. From one stage to another, the 

number of weak classifiers in a strong classifier increases. An input is evaluated 

on a sequential (stage by stage) basis. If a classifier for a specific stage outputs 

a negative result, the input is discarded immediately. In case the output is 

positive, the input is forwarded onto the next stage. According to Viola & Jones 

(2001), this multi-stage approach allows for the construction of simpler 

classifiers which can then be used to reject most negative (non-face) input 

quickly while spending more time on positive (face) input. 
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Fig 1.3 Cascade Amplifier 

 

 

 

3.2.2 Histogram Of Oriented Gradients: The histogram of oriented gradients 
(HOG) is a feature descriptor used in computer vision and image processing for 

object detection. The technique counts occurrences of gradient orientation in 
localized portions of an image. This method is similar to that of edge 

orientation histograms, scale-invariant feature transform descriptors, and shape 
contexts, but differs in that it is computed on a dense grid of uniformly spaced 

cells and uses overlapping local contrast normalization for improved accuracy. 

 

Algorithm overview: 
 

Compute a Histogram of Oriented Gradients (HOG) by 

1. global image normalization 

2. computing the gradient image in x and y 

3. computing gradient histograms 

4. Normalizing across blocks 

5. flattening into a feature vector 
 

The first stage applies an optional global image normalization equalization that 

is designed to reduce the influence of illumination effects. In practice, we use 

gamma (power-law) compression, computing the square root or the log of each 

color channel. Image texture strength is typically proportional to the local 
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surface illumination so this compression helps to reduce the effects of local 

shadowing and illumination variations. 

The second stage computes first-order image gradients. These capture contour, 
silhouette, and some texture information, while providing further resistance to 
illumination variations. The locally dominant color channel is used, which 
provides color invariance to a large extent. Variant methods may also include 
second-order image derivatives, which act as primitive bar detectors - a useful 
feature for capturing, e.g., bar-like structures in bicycles and limbs in humans. 

The third stage aims to produce an encoding that is sensitive to local image 
content while remaining resistant to small changes in pose or appearance. The 
adopted method pools gradient orientation information locally in the same way 
as the SIFT feature. The image window is divided into small spatial regions, 
called "cells". For each cell, we accumulate a local 1-D histogram of gradient or 
edge orientations over all the pixels in the cell. This combined cell-level 1-D 
histogram forms the basic “orientation histogram” representation. Each 
orientation histogram divides the gradient angle range into a fixed number of 
predetermined bins. The gradient magnitudes of the pixels in the cell are used to 
vote into the orientation histogram. 

The fourth stage computes normalization, which takes local groups of cells and 
contrasts their overall responses before passing to the next stage. Normalization 
introduces better invariance to illumination, shadowing, and edge contrast. It is 
performed by accumulating a measure of local histogram “energy” over local 
groups of cells that we call "blocks". The result is used to normalize each cell in 
the block. Typically each cell is shared between several blocks, but its 
normalizations are blocked dependent and thus different. The cell thus appears 
several times in the final output vector with different normalizations. This may 
seem redundant but it improves the performance. We refer to the normalized 
block descriptors as Histogram of Oriented Gradient (HOG) descriptors. 

 
 

3.2.3 Single-Shot Detector(SSD): 

SSD has two components: a backbone model and an SSD head. The backbone 
model usually is a pre-trained image classification network as a feature 
extractor. This is typically a network like ResNet trained on ImageNet from 
which the final fully connected classification layer has been removed. We are 
thus left with a deep neural network that can extract semantic meaning from the 
input image while preserving the spatial structure of the image albeit at a lower 
resolution. For ResNet34, the backbone results in a 256 7x7 feature map for an 
input image. The SSD Head is just one or more convolutional layers added to 
this backbone and the outputs are interpreted as the bounding boxes and classes 
of objects in the spatial location of the activations of the final layers. 
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In the figure below, the first few layers (white boxes) are the backbone, the 

last few layers (blue boxes) represent the SSD head. 
 
 

 

Fig 1.4 Single Shot Detector 

 

 

 

 

 

3.3 Object Detection Framework: 

 

Object Detection: Object detection is a computer vision technique that works 
to identify and locate objects within an image or video. Specifically, object 
detection draws bounding boxes around these detected objects, which allow us 

to locate where said objects are in (or how they move through) a given scene. 

 
Object detection is commonly confused with image recognition, so before we 
proceed, we must clarify the distinctions between them. Image recognition 
assigns labels to an image. A picture of a dog receives the label “dog”. A 

picture of two dogs still receives the label “dog”. Object detection, on the other 
hand, draws a box around each dog and labels the box “dog”. The model 

predicts where each object is and what label should be applied. In that way, an 
object provides more information about an image than recognition. 
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Here’s an example of how this distinct look in practice: 
 

 

 

 
 

 
Fig 1.5 Image recognition v/s Object detection 

 

Traditional object detection uses a multi-step process. A well-known detector is 

the Viola-Jones detector, which can achieve real-time detection. The algorithm 

extracts feature by Haar feature descriptor with an integral image method, 

selects useful features, and detects objects through a cascaded detector. 

Although it utilizes integral images to facilitate the algorithm, it is still very 

computationally expensive. Rather than using handcrafted features, deep 

learning-based detectors demonstrated excellent performance recently, due to 

their robustness and high feature extraction capability. There are two popular 

categories, one-stage object detectors, and two-stage object detectors. On one 

hand, we have two-stage detectors, such as Faster R-CNN (Region-based 

Convolutional Neural Networks) or Mask R-CNN, that (i) use a Region 

Proposal Network to generate regions of interests in the first stage and (ii) send 

the region proposals down the pipeline for object classification and bounding-

box regression. Such models reach the highest accuracy rates but are typically 

slower. On the other hand, we have single-stage detectors, such as YOLO (You 

Only Look Once) and SSD (Single Shot MultiBox Detector), that 
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treat object detection as a simple regression problem by taking an input image 

and learning the class probabilities and bounding box coordinates. Such models 

reach lower accuracy rates but are much faster than two-stage object detectors. 

The researchers found that a one-stage detector does not perform well by using 

the last feature output only, because the last feature map has fixed receptive 

fields, which can only observe certain areas on original images. To design an 

effective network for face mask detection, we adopt the object detector 

framework, which suggests a detection network with a backbone, a neck, and 

heads. The backbone refers to a general feature extractor made up of 

convolutional neural networks to extract information in images to feature maps. 

In RetinaFaceMask, we adopt ResNet as a standard backbone, In terms of the 

neck, it is an intermediate component between a backbone and heads, and it can 

enhance or refine original feature maps. In RetinaFaceMask, FPN is applied as 

a neck, which can extract high-level semantic information and then fuse this 

information into previous layers’ feature maps by adding operation with a 

coefficient. Finally, heads stand for classifiers, predictors, estimators, etc., 

which can achieve the final objectives of the network. 

 
3.3.1 ResNet: A residual neural network (ResNet) is an artificial neural 
network (ANN) of a kind that builds on constructs known from pyramid cells in 
the cerebral cortex. Residual neural networks do this by utilizing skip 
connections, or shortcuts to jump over some layers. Typical ResNet models are 
implemented with double- or triple-layer skips that contain nonlinearities and 

batch normalization in between. An additional weight matrix may be used to 
learn the skip weights; these models are known as Highway nets. Models with 

several parallel skips are referred to as DenseNets. In the context of residual 
neural networks, a non-residual network may be described as a plain network. 

 
There are two main reasons to add skip connections: to avoid the problem of 
vanishing gradients, or to mitigate the Degradation (accuracy saturation) 
problem; where adding more layers to a suitably deep model leads to higher 
training error. During training, the weights adapt to mute the upstream layer and 
amplify the previously skipped layer. In the simplest case, only the weights for 
the adjacent layer's connection are adapted, with no explicit weights for the 
upstream layer. This works best when a single nonlinear layer is stepped over, 
or when the intermediate layers are all linear. If not, then an explicit weight 
matrix should be learned for the skipped connection (a Highwaynet should be 
used). 
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Fig 1.6 Skip Connections 

Skipping effectively simplifies the network, using fewer layers in the initial 

training stages. This speeds learning by reducing the impact of vanishing 

gradients, as there are fewer layers to propagate through. The network then 

gradually restores the skipped layers as it learns the feature space. Towards the 

end of the training, when all layers are expanded, it stays closer to the manifold 

and thus learns faster. A neural network without residual parts explores more of 

the feature space. This makes it more vulnerable to perturbations that cause it to 

leave the manifold and necessitates extra training data to recover. 

Fig 1.7 ResNet 
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3.3.2 Feature Pyramid Network: Feature Pyramid Network (FPN) is a 

feature extractor designed for such pyramid concepts with accuracy and speed 

in mind. It replaces the feature extractor of detectors like Faster R-CNN and 

generates multiple feature map layers (multi-scale feature maps) with better 

quality information than the regular feature pyramid for object detection. 
 

 
 

 
Fig 1.8 Feature pyramid Network 

 

FPN consists of a bottom-up and a top-down pathway. The bottom-up pathway 

is the usual convolutional network for feature extraction. As we go up, the 

spatial resolution decreases. With more high-level structures detected, the 

semantic value for each layer increases. 
 
 

Fig 1.9 Feature extraction in FPN 
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SSD makes detection from multiple feature maps. However, the bottom layers 

are not selected for object detection. They are in high resolution but the 

semantic value is not high enough to justify its use as the speed slow-down is 

significant. So SSD only uses upper layers for detection and therefore performs 

much worse for small objects.FPN provides a top-down pathway to construct 

higher resolution layers from a semantic-rich layer. While the reconstructed 

layers are semantic strong but the locations of objects are not precise after all 

the downsampling and upsampling. We add lateral connections between 

reconstructed layers and the corresponding feature maps to help the detector to 

predict the location better. It also acts as skip connections to make training 

easier. 

 
3.3.3 Classifiers, Predictors, Estimators: 

 
Classifiers: A classifier is an algorithm that sorts data into labeled classes or 

categories of information. A simple practical example is spam filters that scan 

incoming “raw” emails and classify them as either "spam" or "not spam." 

Classifiers are a concrete implementation of pattern recognition in many forms 

of machine learning. 

 
Classifiers are where high-end machine theory meets practical application. 

These algorithms are more than a simple sorting device to organize or "map" 

unlabeled data instances into discrete classes. Classifiers have a specific set of 

dynamic rules, which includes an interpretation procedure to handle vague or 

unknown values, all tailored to the type of inputs being examined. Most 

classifiers also employ probability estimates that allow end-users to manipulate 

data classification with utility functions. 

 
predictors: Predictor variables in the machine learning context the input data 
or the variables that are mapped to the target variable through an empirical 
relationship usually determined through the data. In statistics, you refer to them 
as predictors. Each set of predictors may be called an observation. 

 
Estimators: In machine learning, an estimator is an equation for picking the 

"best," or most likely accurate, data model based upon observations in reality. 

Not to be confused with estimation in general, the estimator is the formula that 

evaluates a given quantity (the estimand) and generates an estimate. This 

estimate is then inserted into the deep learning classifier system to determine 

what action to take. 
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Estimators come in two broad categories -point and interval. Point equations 

generate single value results, such as standard deviation, that can be plugged 

into a deep learning algorithm’s classifier functions. Interval equations generate 

a range of likely values, such as confidence intervals. 

 
3.4 Convolutional Neural Network: In deep learning, a convolutional 

neural network (CNN/ConvNet) is a class of deep neural networks, most 
commonly applied to analyze visual imagery. Now when we think of a neural 

network we think about matrix multiplications but that is not the case with 
ConvNet. It uses a special technique called Convolution. Now in mathematics 

convolution is a mathematical operation on two functions that produces a third 
function that expresses how the shape of one is modified by the other. 

 
 

 
Fig 1.10 Convolutional neural Network 

 

Convolutional layer: Convolutional layers are the major building blocks used 
in convolutional neural networks. Convolution is the simple application of a 

filter to an input that results in inactivation. Repeated application of the same 
filter to an input results in a map of activations called a feature map, indicating 
the locations and strength of a detected feature in input, such as an image. 
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The innovation of convolutional neural networks is the ability to automatically 

learn a large number of filters in parallel specific to a training dataset under the 

constraints of a specific predictive modeling problem, such as image 

classification. The result is highly specific features that can be detected 

anywhere on input images. 
 

Pooling: Pooling is nothing other than the downsampling of an image. The 

most common pooling layer filter is of size 2x2, which discards three forth of 

the activations. The role of the pooling layer is to reduce the resolution of the 

feature map but retain features of the map required for classification through 

translational and rotational invariants. In addition to spatial invariance 

robustness, pooling will reduce the computation cost by a great deal. 

 

● Backpropagation is used for training of pooling operation 

● It again helps the processor to process things faster. 

Max pooling: where we take the largest of the pixel values of a segment. 
 
 

 
Fig 1.11 Max Pooling 

 

Padding: When we augment the 5x5x1 image into a 6x6x1 image and then 
apply the 3x3x1 kernel over it, we find that the convolved matrix turns out to be 
of dimensions 5x5x1. Hence the name — Same Padding. 

 

Fully Connected layer: Fully Connected layers in a neural network are those 

layers where all the inputs from one layer are connected to every activation unit 
of the next layer. In most popular machine learning models, the last few layers 
are full connected layers that compile the data extracted by previous layers to 

form the final output. It is the second most time-consuming layer second to the 
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Convolution Layer. 
 

 
Fig 1.12 Fully Connected layers 

 

3.5 Context Attention Model: To improve the detection performance for 

face masks, RetinaFaceMask proposes a novel context attention module as its 

detection heads. Similar to the context module in SSH, we utilize different sizes 

of kernels to form an Inception-like block. It can obtain different receptive 

fields from the same feature map, so it would be able to incorporate more 

different sizes of objects through concatenation operations. However, the 

original context module does not take faces or masks into account, so we 

simply cascade an attention module CBAM after the original context module to 

allow RetinaFaceMask to focus on face and mask features. The context-aware 

part has three sub-branches, including one 3 × 3, two 3 × 3, and three 3 × 3 

kernels in each branch individually. Then, the concatenated feature maps are 

fed into CBAM through channel attention to select useful channels by a multi-

layer perceptron and then spatial attention to focus on important regions. 
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HARDWARE TOOLS: 

4.1 Jetson Nano: 

4.1.1 Introduction: 

1. NVIDIA Jetson Nano developer kit is an Al computer. It delivers the 

compute performance to run modern Al workloads at an 

unprecedented size. It is incredibly power-efficient, consuming as little as 5 

watts. 

2. GPU128-core Maxwell CPU Quad-core ARM AS7GHz. 

3. NVIDIA India Memory 4 GB 64-bit LPDDR4 25.6 GB/s. 

4. It is supported by NVIDIA Jetpack, used across the entire NVIDIA Jetson family of 
products, reducing complexity and overall effort for developers, learners, and 
makers. 

 
4.1.2 overview: 

 

Fig 2.1 Front view of Jetson Nano 

 
 

Fig 2.2 Rear view of Jetson Nano 
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4.3.1carrier board layout: 
 

 

Fig 2.3 Layout of Jetson Nano 

 

DS1] Power LED; lights when the developer kit is powered on 

[J1]  - SO-DIMM connector for Jetson module. The module is pre-

assembled on the developer kit 

[J2]  - USB Type C power connector for 5V⎓3A power supply.  

[J3] -  RJ45 ethernet connector. See networking section 

[J4] -  HDMI connector 

[J5]  - Camera connector for MIPI-CSI2 camera. See camera section 

[J6]  - 40-pin header: Includes power pins ( +5V/+3.3V) and interface 

signal pins for I2C (2x), UART, SPI (2x), I2S, and GPIOs 

[J7]  - 4-pin fan control header. Pulse Width Modulation (PWM) output 

and tachometer input are supported 

[J8] - Optional coin-cell socket 

[J9] - USB 3.0 type A connector. Limited to 1A total power delivery 

[J10] -  Stack of two USB 2.0 type A connectors  

[J11] - Optional button header (2x4); Includes connections for 

Reset/Force Recovery/Power Buttons, and Auto-power-on disable 

[J12] -Button header (1x12); Includes connections for power LED, 

Reset/Force Recovery/Power Buttons, UART, and Auto-power-on disable 

[J13]- Micro-USB 2.0 connector supporting Recovery Mode and Device 

Mode. 

 

 
4.3.1 40-Pin header: 

The 40-pin header provides access to power, ground, and interface signal pins. 

Power pins 
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o There are two 3.3V power pins and two 5V power pins. These are not 

switchable; power is always available when the developer kit is connected 

to power. 

o The two 5V pins can be used to power the developer kit at 2.5A 

each. (Do not power the developer kit via these pins and USB-C 

connector at the same time.) 

Interface signal pins 

o All signals use 3.3V levels 

o By default, all interface signal pins are configured as GPIOs, except 

those supporting I2C and UART. 
 
 

 
Fig 2.4 40 Pin Header 
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4.1.3.2 8-Pin Button Header : 

This is an alternate 8-Pin (2x4) button header that can be soldered on 

the carrier board in location J11 and used in place of the main button 

header. Header details ( examples ): 

Total pins/positions 8 

2 rows of 4 pins 

Pitch is 2.54mm 

Unshrouded 

Through-hole vertical 

Fig 2.5 8 Pin Header 

 

4.1.3.3 4-Pin Fan Header 

The pinout of the 4-pin fan control header at location J7 is shown below. 

The header can support either a 3-pin fan connection (GND, PWR, and TACH) 

or a 4-pin fan connection (GND, PWR, TACH, and PWM). Using a fan with 

PWM capability allows the software to adjust the speed of the fan as needed. 

Fig 2.6 4 Pin Header 
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4.1.4 Networking: 

The developer kit supports wired and wireless networking:- 

 
Wired - Ethernet will be available as soon as a cable with a network 

connection is plugged into the RJ45 port 

WLAN - Wireless networks will be available after plugging in a supported 

USB wireless networking adapter 

WPAN - Bluetooth will be available after plugging in a supported 

USB Bluetooth adapter. 

4.1.5 Camera: 

Supports 2-Lanes CSI Camera 

Upgraded 2-Lanes CSI, Instead Of The Previous 1-Lane, Easily Play Around With 
Binocular Vision. 

 
Fig 2.7 Camera Lanes 

 

 

 

 

 

 
The developer kit supports USB-C power supplies of 5V ± 5%, 3A. If 

your phone uses a USB-C power supply, there is a chance that it is enough 

to power the device. Check its specifications. 

If the voltage drops below 4.25V, the system will shut down. 
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4.1.6 Power consumption: 

The developer kit’s total power usage is the sum of carrier board, module, 

and peripheral power usage, as determined by your particular use case. 

There are two software-defined power modes for the Jetson 

module. The two-module power modes are: 

10W - default mode for more performance 

5W - suggested for less energy use 

Power via 40-pin Header 

The developer kit can be powered by connecting the 40-pin header. 

 
4.1.7 Specifications: 

 

 

1. GPU 128-core Maxwell 

2. CPU Quad-core ARM A57 @ 1.43 GHz 

3. MEMORY 4 GB 64-bit LPDDR4 25.6 GB/s 

4. STORAGE micro SD card (NOT included.) 

5. VIDEO ENCODER 4K @ 30 | 4x 1080p @ 

30 | 9x 720p @ 30 (H.264/H.265) 

6. VIDEO DECODER 4K @ 60 | 2x 4K @ 30 | 

8x 1080p @ 30 | 18x 720p @ 30 (H.264/H.265) 

7. CAMERA 2x MIPI CSI-2 D'PHY lanes 

8. CONNECTIVITY Gigabit Ethernet, M.2 Key 
E expansion connector 

9. DISPLAY HDMI and DP 

10. USB 4x USB 3.0, USB 2.0 Micro-B 
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4.1.8 Board description: 

 

 

 
 

1. MICRO SD CARD SLOT 

Insert a 16GB or larger TF card for main storage and writing system 
image. Jetson nano developer kit uses a microSD card as a boot 
device and for main storage 

2. 40 PIN EXPANSION HEADER 

The 40 pin expansion header lets you connect a jetson developer 
kit to off-the-shelf-raspberry pi HATs such as seed grove modules, 
Sparkfun qwiic products, and others. Many of the pins can be used 
either as GPIO or as “special function I/O”(SFIO) such as 
12C,12S, etc. 

3. MICRO USB PORT 

The micro USB port is used for 5v power input or USB 
data transmission. 

4. Gigabit Ethernet port 
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 Jetson nano uses 10/100/1000 base-t auto-negotiation 

5. Gigabit Ethernet port 

Ethernet ports can also be referred to as sockets or jacks. The 
main function of an ethernet port is to create an ethernet 
connection. 
Ethernet connections can be created between computers, servers, 
switches, hubs, routers, modems, gaming consoles, printers, and 
much more. Jetson nano uses 10/100/1000 base-t auto-negotiation. 

6. USB 3.0 port 

Its main function is to store, receive, and transfer data across 
computers and electronic devices. The current USB 3.0 transfer 
speed is at a whopping 5 Gigabits per second. jetson nano has 4 x 
USB 3.0 ports 

7. HDMI OUTPUT PORT 

The HDMI interface allows a port to send high-resolution digital 
video, theatre-quality sound, and device commands through a 
connector and down a single cable. There are several types of 
HDMI cable, each designed to support a video resolution and 
features in the HDMI specification. 

8. DISPLAYPORT CONNECTOR 

DisplayPort is a digital interface designed to deliver video and audio 
over a singular cable. Much like HDMI, it can connect a monitor to a 
data source, like a graphics card, and deliver the video and sound 
that it's outputting to the display screen. 

9. DC JACK 

A DC jack is a component used in many electronic devices that 
allows a steady power source to be plugged in. nano uses a dc jack 
for 5v power input 

10. NANO HAS 2 X MIPI CSI CAMERA CONNECTOR 
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4.2 Logitech camera specifications and features: 

Specifications: 

Max video :1280 x 720 pixels 

Interface: USB 2.0 port 

Bundled software Pan, tilt, and zoom controls. Video and photo capture. Face 

tracking. Motion detection. 

Features: 

Full HD widescreen video calling: Logitech C270 lets you make widescreen 

video calls in HD 720p at 30fps. The lense with a 60-degree field of view 

covers all of the action 

 

 
HD lighting adjustment: Automatically improves the warmth and balance of 

your image for whatever setting you are in, so you look your best, even in dim 

environments 

 
• Built-in noise-reducing mic: Enjoy clear conversation even in 

busy surroundings and streaming over wifi with noise reducing mic 

 
• Universal clip: Attaches securely to your screen or works as a stand on a 

shelf or desk, the clip mounts at different angles to bring your friends and 

family all the details around you. 

• Ideal for laptop or tablet: Compatible with Windows 10 or later 

Windows 8, Windows 7, Mac OS 10.10 or later, and Chrome OS via the usb 

port. 
 

Fig 2.8 Logitech Camera 
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USB Cable: 

USB cable is an interface developed for connecting compact and mobile 

devices such as your smartphones, MP3 players, GPS devices, photo 

printers, and digital cameras. 

There are several different USB cables each of which has different 

benefits and it's suited to a different task. 

Some of the types of USB cables are 

USB-a 

USB-b Mini-USB 

Micro-usb 

Usb-c 

USB-3 
 
 

 
Fig 2.9 USB Cable 

4.4 Micro SD card: 

A memory card or memory cartridge is an electronic data storage device used 

for storing digital information, typically using flash memory. These are 

commonly used in portable electronic devices, such as digital cameras, mobile 

phones, laptop computers, tablets, PDAs, portable media players, video game 

consoles, synthesizers, electronic keyboards, and digital pianos, and allow 

adding memory to such devices without compromising ergonomy, as the card 

is usually contained within the device rather than protruding like USB flash 

drives. 
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Fig 2.10 Memory Card 
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CHAPTER 5 

SOFTWARE TOOLS 
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5.1 Set up and booting : 

 
Write Image to the MicroSD Card: 

To prepare a microSD card, we need a computer with an Internet connection and 

the ability to read and write SD cards, either via a built-in SD card slot or 

adapter. 

1. Download the Jetson Nano Developer Kit SD Card Image, and note 
where it was saved on the computer. 

2. Write the image to the microSD card 

After the microSD card is ready, proceed to set up the developer kit. 

Setup and First Boot: 

There are two ways to interact with the developer kit: 

1) With display, keyboard, and mouse attached 

2) In “headless mode” via a connection from another computer. We can conduct the 
initial setup either way. 

 Initial setup with 
 

display attached 

Initial setup in headless 
 

mode 

Monitor, keyboard and 
 

mouse 

Required Not required 

Extra compute Not required Required 

Power options Either Micro-USB or DC 

the power supply can be 

used 

DC power supply is 

needed 

Figure 3.1.: Requirements for Initial setup with a display attached and Initial setup in headless mode 

 

 

1.  Initial Setup with Display 
Attached Setup Steps: 

● Insert the microSD card (with the system image already written to it) 

into the slot on the underside of the Jetson Nano module. 

https://developer.nvidia.com/jetson-nano-sd-card-image
https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit#setup


38  

 
 

 

 

 

Figure 3.2: To insert Jetpack-flashed microSD after it has been flashed, find the microSD slot as shown by 
the red circle in the image. Insert the microSD until it clicks into place. 

 

 
 

● Set the developer kit on top of the paper stand. 

● Power on your computer display and connect it. 

● Connect the USB keyboard and mouse. 

● Connect the Micro-USB power supply. The developer kit will 

power on and boot automatically. 
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First Boot: 

A green LED next to the Micro-USB connector will light as soon as the 

developer kit powers on. When you boot the first time, the developer kit will 

take you through some initial setup, including: 

● Review and accept NVIDIA Jetson software EULA 

● Select system language, keyboard layout, and time zone 

● Create username, password, and computer name 

● Select APP partition size—it is recommended to use the max 
size suggested 

After Logging In: 

We will see this screen. Congratulations! 
 

 
 

Figure 3.3: Successful completion of Initial setup with Display 
Attached. 

2. Initial Setup Headless Mode: 

To complete setup when no display is attached to the developer kit, we’ll need to 

connect the developer kit to another computer and then communicate with it via 

a terminal application (e.g., PuTTY) to handle the USB serial communication on 

that other computer. 

Note: Headless initial configuration requires the developer kit to be powered by 

DC power supply with barrel jack connector since the Micro-USB port is required 

to access the initial configuration promptsSetup Steps: 
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● Unfold the paper stand and place it inside the developer kit box. 

● Insert the microSD card (with the system image already written to 

it into the slot on the underside of the Jetson Nano module. 
 

Figure 3.4: To insert Jetpack-flashed microSD after it has been flashed, find the MicroSD 

slot and insert microSD until it clicks into place. 

 

 

● Set the developer kit on top of the paper stand. 

● Jumper the J48 Power Select Header pins. 

● Connect your other computer to the developer kit’s Micro-USB port. 

● Connect a DC power supply to the J25 Power Jack. The developer kit 

will power on automatically. 

● Allow 1 minute for the developer kit to boot. 

 
● On your other computer, use the serial terminal application 

to connect via host serial port to the developer kit 
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Instructions for Windows: 

Locate the correct COM port: Assuming you have already connected your 

Windows PC to the developer kit’s Micro-USB port, right-click the 

Windows Start icon and select “Device Manager.” 
 
 

Figure 3.5: Selecting Device Manager 
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Figure 3.6: Open the “Ports (COM & LPT)” to find the COM port number for “USB 

Serial Device” (in this case “COM 16”) 

 

 

Double click each USB Serial Device entry so you can check its properties. 

Go to the “Details” tab, and select “Hardware Ids”. If you see VID 0955 and 

PID 7020, that USB Serial Device for your Jetson developer kit. Note the 

COM port name (COM16 in this example) for later use. 



43  

 
 

Figure 3.7: USB Serial Device (COM16) Properties 

 

 

Open the COM port on PuTTY: 

PuTTY is one of the most widely used terminal applications for accessing 

serial consoles. You can use other terminal applications, but if you don’t 

have any on your Windows PC, you can download PuTTY 

Open the PuTTY application. When “Session” is selected in the left 

“Category” pane, input the COM port name for “Serial line” and “115200” 

for “Speed”. 
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Figure 3.8: PUTTY Configuration 

 

 
 

Figure 3.9: Click “Open” to connect to the console. 
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Once connected to the developer kit, hit <space> if the initial setup screen 

does not appear automatically. 

First Boot: 

A green LED next to the Micro-USB connector will light as soon as the 

developer kit powers on. When you boot the first time, the developer kit will 

take you through some initial setup, including: 

● Review and accept NVIDIA Jetson software EULA 

● Select system language, keyboard layout, and time zone 

● Create username, password, and computer name 

● Select APP partition size—it is recommended to use the max 
size suggested 

After Logging In: You will see a standard Linux command line prompt in your 

serial terminal application. Congratulations! 

 
Troubleshooting: 

1. Power: If you cannot boot your Jetson Nano Developer Kit, the 

problem may be with your USB power supply. Please use a good quality 

power supply. It’s also important to have a good quality cord connecting your 

power supply to the developer kit: 

● It’s good to use a power supply with a permanently attached cord. 

● Shorter cables will drop less voltage. 

2. Display: HDMI to DVI adaptors is not supported. Please 

use a display that accepts HDMI or DP input 

 
5.2 Virtual environment: 

 

Python virtual environments on Jetson Nano: Python virtual environments 

are a best practice when both developing and deploying Python software 

projects. 
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Figure 3.10: Each Python virtual environment you create on your NVIDIA Jetson Nano is 

separate and independent from the others. 

 

 
Virtual environments allow for isolated installs of different Python 

packages. When we use them, we could have one version of a Python 

library in one environment and another version in a separate, sequestered 

environment 
 

 
 

 

 

Figure 3.11: Terminal output from the virtualenvwrapper setup installation indicates that there are no errors. 

We now have a virtual environment management system in place so we can create computer vision and deep 

learning virtual environments on our NVIDIA Jetson Nano. 
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‘py3cv4’ virtual environment: The Virtualenvwrapper tool 

provides the following commands to work with virtual 

environments: 

● mkvirtualenv: Create a Python virtual environment 

● lsvirtualenv: List virtual environments installed on your system 

● Rmvirtualenv: Remove a virtual environment 

● work on: Activate a Python virtual environment 

● deactivate: Exits the virtual environment taking you back to your 

system environment 
 

 

 

Figure 3.12: Created py3cv4 virtual environment on Jetson Nano Kit. 

 

 

5.3 TechStack/framework used: 

 

OpenCV: OpenCV is a cross-platform library using which we can develop 

real-time computer vision applications. It mainly focuses on image processing, 

video capture, and analysis including features like face detection and object 

detection. 

Keras: Keras is an open-source software library that provides a Python 

interface for artificial neural networks. Keras acts as an interface for the 

TensorFlow library. 

Up until version 2.3, Keras supported multiple backends, including 

TensorFlow, Microsoft Cognitive Toolkit, Theano, and PlaidML. As of 

version 2.4, only 

https://opencv.org/
https://keras.io/
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/AI_software
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/TensorFlow
https://en.wikipedia.org/wiki/TensorFlow
https://en.wikipedia.org/wiki/Microsoft_Cognitive_Toolkit
https://en.wikipedia.org/wiki/Theano_(software)
https://en.wikipedia.org/wiki/PlaidML
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TensorFlow is supported. Designed to enable fast experimentation with 

deep neural networks, it focuses on being user-friendly, modular, and 

extensible. 

TensorFlow: TensorFlow is an end-to-end open-source platform for 

machine learning. It has a comprehensive, flexible ecosystem of tools, 

libraries, and community resources that lets researchers push the state-of-

the-art in ML, and developers easily build and deploy ML-powered 

applications. 

Why TensorFlow: 

● Easy model building: TensorFlow offers multiple levels of abstraction 

so you can choose the right one for your needs. Build and train models 

by using the high-level Keras API, which makes getting started with 

TensorFlow and machine learning easy. 

● Robust ML production anywhere: TensorFlow has always provided a 

direct path to production. Whether it’s on servers, edge devices, or the 

web, TensorFlow lets you train and deploy your model easily, no matter 

what language or platform you use 

● Powerful experimentation for research: Build and train state-of-the-

art models without sacrificing speed or performance. TensorFlow gives 

you flexibility and control with features like the Keras Functional API 

and Model Subclassing API for the creation of complex topologies. For 

easy prototyping and fast debugging, use eager execution 

 
Reset: A residual neural network (ResNet) is an artificial neural network 

(ANN) of a kind that builds on constructs known from pyramidal cells in the 

cerebral cortex. Residual neural networks do this by utilizing skip connections, 

or shortcuts to jump over some layers. 

 

 
Figure 3.13: Resnet50 architecture 

https://en.wikipedia.org/wiki/TensorFlow
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Deep_learning
https://www.tensorflow.org/
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1. MobileNet V2: MobileNet V2 is a convolutional neural network 
architecture that seeks to perform well on mobile devices. It is based on an 
inverted residual structure where the residual connections are between the 
bottleneck layers. 

The intermediate expansion layer uses lightweight depthwise convolutions to filter 

features as a source of non-linearity. As a whole, the architecture of MobileNetV2 

contains the initial fully convolution layer with 32 filters, followed by 19 residual 

bottleneck layers. 

2. CMake: CMake is an open-source, cross-platform family of tools designed 
to build, test, and package software. CMake is used to control the software 
compilation process using simple platform and compiler independent 
configuration files, and generate native makefiles and workspaces that can be used 
in the compiler environment of your choice. The suite of CMake tools was created 
by Kitware in response to the need for a powerful, cross-platform build 
environment for open-source projects such as ITK and VTK. 

3. Protobuf Compiler: Protocol Buffers (Protobuf) is a free and open-source 
cross-platform library used to serialize structured data. It is useful in developing 
programs to communicate with each other over a network or for storing data. The 
method involves an interface description language that describes the structure of 
some data and a program that generates source code from that description for 
generating or parsing a stream of bytes that represents the structured data. 

4. NumPy: NumPy is a Python library used for working with arrays. It also 
has functions for working in the domain of linear algebra, Fourier transform, and 

matrices. NumPy was created in 2005 by Travis Oliphant. It is an open-source 
project and you can use it freely. 

5. SciPy: SciPy is a scientific computation library that uses NumPy 
underneath. SciPy stands for Scientific Python. It provides more utility 
functions for optimization, stats, and signal processing. 

 

6. VNC Viewer: In computing, Virtual Network Computing (VNC) is a 
graphical desktop sharing system that uses the Remote FrameBuffer protocol 
(RFB) to remotely control another computer. It transmits the keyboard and mouse 

input from one computer to another, relaying the graphical-screen updates, over a 
network. 

Multiple clients may connect to a VNC server at the same time. Popular uses for 
this technology include remote technical support and accessing files on one's work 
computer from one's home computer, or vice versa. 

https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Cross-platform_software
https://en.wikipedia.org/wiki/Serialization
https://en.wikipedia.org/wiki/Interface_description_language
https://en.wikipedia.org/wiki/Desktop_sharing
https://en.wikipedia.org/wiki/RFB_protocol
https://en.wikipedia.org/wiki/RFB_protocol
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Computer_keyboard
https://en.wikipedia.org/wiki/Computer_mouse
https://en.wikipedia.org/wiki/Computer_screen
https://en.wikipedia.org/wiki/Computer_network
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Figure 3.14: set up a VNC server on jetson nano developer kit 
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CHAPTER 6 

METHODOLOGY 
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METHODOLOGY: 

We adopt the object detector framework, which suggests a detection network with 

a backbone, neck, and head. Object detection is a computer vision technique that 

allows us to identify and locate objects in an image or video. The backbone 

network is essentially a truncated high-quality image classifier that is used to 

extract features that are to be used for prediction in the later stages of the network. 

Backbone plays an important role in object detectors. The performance of object 

detectors highly relies on features extracted by the backbone. The backbone takes 

images as input and extracts the feature maps. In Face Mask Detection, we adopt 

Residual Networks as a standard backbone. Residual Network is a classic neural 

network used as a backbone for many computers' vision tasks. The fundamental 

breakthrough with ResNet was it allows us to train extremely deep neural 

networks with 150+layers successfully. Also, include MobileNet as a backbone. 

The MobileNet network architecture is a special class of convolutional neural 

models that are built using depth-wise separable convolutions and are therefore 

more lightweight in terms of their parameter count and computational complexity. 

The neck is an intermediate component between a backbone and head, and it can 

enhance or refine original feature maps. In Face Mask Detection, FPN is applied 

as a neck. Feature Pyramid Network (FPN) is a feature extractor designed for 

such a pyramid concept with accuracy and speed in mind. It replaces the feature 

extractor of detectors like Faster R-CNN and generates multiple feature map 

layers (multi-scale feature maps) with better quality information than the regular 

feature pyramid for object detection. We use a pyramid of the same image at 

different scales for detection. 

Finally, headstands for classifiers, predictors, estimators, etc., can achieve the 

final objectives of the network. We add a context attention module for neural 

networks that allows the network to focus on specific aspects of a complex input, 

one at a time until the entire dataset is categorized. The output of the detection 

head is through a fully convolutional network rather than a fully connected 

network to further reduce the number of parameters in the network. 

Face Mask Detection consists of an SSD and an FPN and can detect small face 

masks as well. SSD was the first deep neural architecture that did not use region 

proposals and featured an End-to-End approach to detecting objects in an image 

using a single deep neural network that was just as accurate as methods that did. 

Moreover, with the removal of the region proposal steps, the SSD method was 

capable of delivering faster execution times. 



53  

 

 

 

 
 

Figure 4.1: Architecture of Face Mask Detection 

 

 

As deep learning-based methods often require larger datasets, transfer learning is 

proposed to transfer learned knowledge from a source task to a related target task. 

To improve the detection performance for face masks, Face mask detection 

proposes a novel context attention module as its detection heads. We are using the 

NVIDIA Jetson Nano Developer Kit, which is a small, powerful computer that 

lets us run multiple neural networks in parallel for applications like image 

classification, object detection, segmentation, and speech processing. We capture 

images and video using a Logitech camera of 8MP. 
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Figure 4.2: Workflow of Face Mask Detection 

 

 
In the first step, we load data from the disk which consists of different images. 

Then we process this data using image processing algorithms. We divide data into 

training data and testing data. In training data, we generate and train to face 

masks using CNN and SSD algorithms. The training data result in serializing the 

Face Mask Classifier. Now we apply a Face Mask Classifier to the testing data. 

Finally, we have a Face Mask Detector which can detect “Mask” or “No Mask” 

on real-time objects. 
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RESULTS 
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Faces with No Mask 
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Confusing Face without Mask 
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Faces with Mask 
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CONCLUSION 

 
 
This work is done with help of (NVIDIA Jetson Nano and HD Logitech Camera),ResNet , 

VNC server.The aim of our project is to detect the facemasks of and individual and help 

public health . This can be used at shop entrances and allow the persons who wear facemasks 

perfectly. By using this we can protect the employees at the stores who verify face masks by 

replacing them. It can also be implemented in our college premises and can prevent spread to 

some extend.



60  

REFERENCES 

[1] Mingjie Jiang, Xinqi Fan and Hong Yan ,”Retina face mask : A face mask detector ,” arXiv:2005.03950v1, City University of 

Hong Kong,May 11, 2020. 

.com/chandrikadeb7/Face-Mask-Detection 

[2] Chandrikadeb7, “Face Mask Detection." [Online]. Available : https://github.com/chandrikadeb7/Face-Mask-Detection 

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385, 2015 

[4] Yamashita, R., Nishio, M., Do, R.K.G. et al. Convolutional neural networks: an overview and application in radiology. Insights 

Imaging 9, 611–629 (2018). 

[5] ] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: A survey,” arXiv preprint arXiv:1905.05055, 2019. 

[6] K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Xu et al., “Mmdetection: Open mmlab detection 

toolbox and benchmark,” arXiv preprint arXiv:1906.07155, 2019 

[7] M. Najibi, P. Samangouei, R. Chellappa, and L. S. Davis, “Ssh: Single stage headless face detector,” in Proceedings of the 

IEEE International Conference on Computer Vision, 2017, pp. 4875–4884. 

[8] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1440–1448. 

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in 2009 

IEEE conference on computer vision and pattern recognition. Ieee, 2009, pp. 248–255. 

[10] A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way -3bd2b1164a53. Sumit Saha , Dec 15, 

2018.[Online]. Available : 

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53 

[11] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic 

segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2014, pp. 580–587. 

[12] Dasiopoulou, Stamatia, et al. "Knowledge-assisted semantic video object detection." IEEE Transactions on Circuits and 

Systems for Video Technology 15.10 (2005): 1210–1224). 

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
http://www.iti.gr/~bmezaris/publications/csvt05.pdf

